ElasticSearch第二天
ElasticSearch第二天
学习目标:
- 能够使用java客户端完成创建、删除索引的操作
- 能够使用java客户端完成文档的增删改的操作
- 能够使用java客户端完成文档的查询操作
- 能够完成文档的分页操作
- 能够完成文档的高亮查询操作
- 能够搭建Spring Data ElasticSearch的环境
- 能够完成Spring Data ElasticSearch的基本增删改查操作
- 能够掌握基本条件查询的方法命名规则
第一章 ElasticSearch编程操作
1.1 创建工程,导入坐标
pom.xml坐标
<dependencies>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>5.6.8</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>transport</artifactId>
<version>5.6.8</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-to-slf4j</artifactId>
<version>2.9.1</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.24</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.7.21</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.12</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
</dependencies>
1.2 创建索引index
@Test
//创建索引
public void test1() throws Exception{
// 创建Client连接对象
Settings settings = Settings.builder().put("cluster.name", "my-elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
//创建名称为blog2的索引
client.admin().indices().prepareCreate("blog2").get();
//释放资源
client.close();
}
1.3 创建映射mapping
@Test
//创建映射
public void test3() throws Exception{
// 创建Client连接对象
Settings settings = Settings.builder().put("cluster.name", "my-elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
// 添加映射
/**
* 格式:
* "mappings" : {
"article" : {
"dynamic" : "false",
"properties" : {
"id" : { "type" : "string" },
"content" : { "type" : "string" },
"author" : { "type" : "string" }
}
}
}
*/
XContentBuilder builder = XContentFactory.jsonBuilder()
.startObject()
.startObject("article")
.startObject("properties")
.startObject("id")
.field("type", "integer").field("store", "yes")
.endObject()
.startObject("title")
.field("type", "string").field("store", "yes").field("analyzer", "ik_smart")
.endObject()
.startObject("content")
.field("type", "string").field("store", "yes").field("analyzer", "ik_smart")
.endObject()
.endObject()
.endObject()
.endObject();
// 创建映射
PutMappingRequest mapping = Requests.putMappingRequest("blog2")
.type("article").source(builder);
client.admin().indices().putMapping(mapping).get();
//释放资源
client.close();
}
1.4 建立文档document
1.4.1 建立文档(通过XContentBuilder)
@Test
//创建文档(通过XContentBuilder)
public void test4() throws Exception{
// 创建Client连接对象
Settings settings = Settings.builder().put("cluster.name", "my-elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
//创建文档信息
XContentBuilder builder = XContentFactory.jsonBuilder()
.startObject()
.field("id", 1)
.field("title", "ElasticSearch是一个基于Lucene的搜索服务器")
.field("content",
"它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。")
.endObject();
// 建立文档对象
/**
* 参数一blog1:表示索引对象
* 参数二article:类型
* 参数三1:建立id
*/
client.prepareIndex("blog2", "article", "1").setSource(builder).get();
//释放资源
client.close();
}
1.4.2 建立文档(使用Jackson转换实体)
1)创建Article实体
public class Article {
private Integer id;
private String title;
private String content;
getter/setter...
}
2)添加jackson坐标
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.8.1</version>
</dependency>
3)代码实现
@Test
//创建文档(通过实体转json)
public void test5() throws Exception{
// 创建Client连接对象
Settings settings = Settings.builder().put("cluster.name", "my-elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
// 描述json 数据
//{id:xxx, title:xxx, content:xxx}
Article article = new Article();
article.setId(2);
article.setTitle("搜索工作其实很快乐");
article.setContent("我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的搜索模式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够一台开始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch旨在解决所有这些问题和更多的问题。");
ObjectMapper objectMapper = new ObjectMapper();
// 建立文档
client.prepareIndex("blog2", "article", article.getId().toString())
//.setSource(objectMapper.writeValueAsString(article)).get();
.setSource(objectMapper.writeValueAsString(article).getBytes(), XContentType.JSON).get();
//释放资源
client.close();
}
1.5 查询文档操作
1.5.1关键词查询
@Test
public void testTermQuery() throws Exception{
//1、创建es客户端连接对象
Settings settings = Settings.builder().put("cluster.name", "my-elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
//2、设置搜索条件
SearchResponse searchResponse = client.prepareSearch("blog2")
.setTypes("article")
.setQuery(QueryBuilders.termQuery("content", "搜索")).get();
//3、遍历搜索结果数据
SearchHits hits = searchResponse.getHits(); // 获取命中次数,查询结果有多少对象
System.out.println("查询结果有:" + hits.getTotalHits() + "条");
Iterator<SearchHit> iterator = hits.iterator();
while (iterator.hasNext()) {
SearchHit searchHit = iterator.next(); // 每个查询对象
System.out.println(searchHit.getSourceAsString()); // 获取字符串格式打印
System.out.println("title:" + searchHit.getSource().get("title"));
}
//4、释放资源
client.close();
}
2.5.2 字符串查询
@Test
public void testStringQuery() throws Exception{
//1、创建es客户端连接对象
Settings settings = Settings.builder().put("cluster.name", "my-elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
//2、设置搜索条件
SearchResponse searchResponse = client.prepareSearch("blog2")
.setTypes("article")
.setQuery(QueryBuilders.queryStringQuery("搜索")).get();
//3、遍历搜索结果数据
SearchHits hits = searchResponse.getHits(); // 获取命中次数,查询结果有多少对象
System.out.println("查询结果有:" + hits.getTotalHits() + "条");
Iterator<SearchHit> iterator = hits.iterator();
while (iterator.hasNext()) {
SearchHit searchHit = iterator.next(); // 每个查询对象
System.out.println(searchHit.getSourceAsString()); // 获取字符串格式打印
System.out.println("title:" + searchHit.getSource().get("title"));
}
//4、释放资源
client.close();
}
2.5.2 使用文档ID查询文档
@Test
public void testIdQuery() throws Exception {
//client对象为TransportClient对象
SearchResponse response = client.prepareSearch("blog1")
.setTypes("article")
//设置要查询的id
.setQuery(QueryBuilders.idsQuery().addIds("test002"))
//执行查询
.get();
//取查询结果
SearchHits searchHits = response.getHits();
//取查询结果总记录数
System.out.println(searchHits.getTotalHits());
Iterator<SearchHit> hitIterator = searchHits.iterator();
while(hitIterator.hasNext()) {
SearchHit searchHit = hitIterator.next();
//打印整行数据
System.out.println(searchHit.getSourceAsString());
}
}
2.6 查询文档分页操作
2.6.1 批量插入数据
@Test
//批量插入100条数据
public void test9() throws Exception{
// 创建Client连接对象
Settings settings = Settings.builder().put("cluster.name", "my-elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
ObjectMapper objectMapper = new ObjectMapper();
for (int i = 1; i <= 100; i++) {
// 描述json 数据
Article article = new Article();
article.setId(i);
article.setTitle(i + "搜索工作其实很快乐");
article.setContent(i
+ "我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的搜索模式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够一台开始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch旨在解决所有这些问题和更多的问题。");
// 建立文档
client.prepareIndex("blog2", "article", article.getId().toString())
//.setSource(objectMapper.writeValueAsString(article)).get();
.setSource(objectMapper.writeValueAsString(article).getBytes(),XContentType.JSON).get();
}
//释放资源
client.close();
}
2.6.2 分页查询
@Test
//分页查询
public void test10() throws Exception{
// 创建Client连接对象
Settings settings = Settings.builder().put("cluster.name", "my-elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
// 搜索数据
SearchRequestBuilder searchRequestBuilder = client.prepareSearch("blog2").setTypes("article")
.setQuery(QueryBuilders.matchAllQuery());//默认每页10条记录
// 查询第2页数据,每页20条
//setFrom():从第几条开始检索,默认是0。
//setSize():每页最多显示的记录数。
searchRequestBuilder.setFrom(0).setSize(5);
SearchResponse searchResponse = searchRequestBuilder.get();
SearchHits hits = searchResponse.getHits(); // 获取命中次数,查询结果有多少对象
System.out.println("查询结果有:" + hits.getTotalHits() + "条");
Iterator<SearchHit> iterator = hits.iterator();
while (iterator.hasNext()) {
SearchHit searchHit = iterator.next(); // 每个查询对象
System.out.println(searchHit.getSourceAsString()); // 获取字符串格式打印
System.out.println("id:" + searchHit.getSource().get("id"));
System.out.println("title:" + searchHit.getSource().get("title"));
System.out.println("content:" + searchHit.getSource().get("content"));
System.out.println("-----------------------------------------");
}
//释放资源
client.close();
}
2.7 查询结果高亮操作
2.7.1 什么是高亮显示
在进行关键字搜索时,搜索出的内容中的关键字会显示不同的颜色,称之为高亮
百度搜索关键字"传智播客"
京东商城搜索"笔记本"
2.7.2 高亮显示的html分析
通过开发者工具查看高亮数据的html代码实现:
ElasticSearch可以对查询出的内容中关键字部分进行标签和样式的设置,但是你需要告诉ElasticSearch使用什么标签对高亮关键字进行包裹
2.7.3 高亮显示代码实现
@Test
//高亮查询
public void test11() throws Exception{
// 创建Client连接对象
Settings settings = Settings.builder().put("cluster.name", "my-elasticsearch").build();
TransportClient client = new PreBuiltTransportClient(settings)
.addTransportAddress(new InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
// 搜索数据
SearchRequestBuilder searchRequestBuilder = client
.prepareSearch("blog2").setTypes("article")
.setQuery(QueryBuilders.termQuery("title", "搜索"));
//设置高亮数据
HighlightBuilder hiBuilder=new HighlightBuilder();
hiBuilder.preTags("<font style='color:red'>");
hiBuilder.postTags("</font>");
hiBuilder.field("title");
searchRequestBuilder.highlighter(hiBuilder);
//获得查询结果数据
SearchResponse searchResponse = searchRequestBuilder.get();
//获取查询结果集
SearchHits searchHits = searchResponse.getHits();
System.out.println("共搜到:"+searchHits.getTotalHits()+"条结果!");
//遍历结果
for(SearchHit hit:searchHits){
System.out.println("String方式打印文档搜索内容:");
System.out.println(hit.getSourceAsString());
System.out.println("Map方式打印高亮内容");
System.out.println(hit.getHighlightFields());
System.out.println("遍历高亮集合,打印高亮片段:");
Text[] text = hit.getHighlightFields().get("title").getFragments();
for (Text str : text) {
System.out.println(str);
}
}
//释放资源
client.close();
}
第三章 Spring Data ElasticSearch 使用
3.1 Spring Data ElasticSearch简介
3.1.1 什么是Spring Data
Spring Data是一个用于简化数据库访问,并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快捷,并支持map-reduce框架和云计算数据服务。 Spring Data可以极大的简化JPA的写法,可以在几乎不用写实现的情况下,实现对数据的访问和操作。除了CRUD外,还包括如分页、排序等一些常用的功能。
Spring Data的官网:http://projects.spring.io/spring-data/
Spring Data常用的功能模块如下:
3.1.2 什么是Spring Data ElasticSearch
Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端API 进行封装 。Spring Data为Elasticsearch项目提供集成搜索引擎。Spring Data Elasticsearch POJO的关键功能区域为中心的模型与Elastichsearch交互文档和轻松地编写一个存储库数据访问层。
官方网站:http://projects.spring.io/spring-data-elasticsearch/
3.2 Spring Data ElasticSearch入门
1)导入Spring Data ElasticSearch坐标
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.itheima</groupId>
<artifactId>itheima_elasticsearch_demo3</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>5.6.8</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>transport</artifactId>
<version>5.6.8</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-to-slf4j</artifactId>
<version>2.9.1</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.24</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.7.21</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.12</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-elasticsearch</artifactId>
<version>3.0.5.RELEASE</version>
<exclusions>
<exclusion>
<groupId>org.elasticsearch.plugin</groupId>
<artifactId>transport-netty4-client</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<version>5.0.4.RELEASE</version>
</dependency>
</dependencies>
</project>
2)创建applicationContext.xml配置文件,引入elasticsearch命名空间
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/data/elasticsearch
http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-1.0.xsd
">
</beans>
3)编写实体Article
package com.itheima.domain;
public class Article {
private Integer id;
private String title;
private String content;
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getTitle() {
return title;
}
public void setTitle(String title) {
this.title = title;
}
public String getContent() {
return content;
}
public void setContent(String content) {
this.content = content;
}
@Override
public String toString() {
return "Article [id=" + id + ", title=" + title + ", content=" + content + "]";
}
}
4)编写Dao
package com.itheima.dao;
import com.itheima.domain.Article;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
@Repository
public interface ArticleRepository extends ElasticsearchRepository<Article, Integer> {
}
5)编写Service
package com.itheima.service;
import com.itheima.domain.Article;
public interface ArticleService {
public void save(Article article);
}
package com.itheima.service.impl;
import com.itheima.dao.ArticleRepository;
import com.itheima.domain.Article;
import com.itheima.service.ArticleService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
@Service
public class ArticleServiceImpl implements ArticleService {
@Autowired
private ArticleRepository articleRepository;
public void save(Article article) {
articleRepository.save(article);
}
}
6) 配置applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/data/elasticsearch
http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-1.0.xsd
">
<!-- 扫描Dao包,自动创建实例 -->
<elasticsearch:repositories base-package="com.itheima.dao"/>
<!-- 扫描Service包,创建Service的实体 -->
<context:component-scan base-package="com.itheima.service"/>
<!-- 配置elasticSearch的连接 -->
<!-- 配置elasticSearch的连接 -->
<elasticsearch:transport-client id="client" cluster-nodes="localhost:9300" cluster-name="my-elasticsearch"/>
<!-- ElasticSearch模版对象 -->
<bean id="elasticsearchTemplate" class="org.springframework.data.elasticsearch.core.ElasticsearchTemplate">
<constructor-arg name="client" ref="client"></constructor-arg>
</bean>
</beans>
7)配置实体
基于spring data elasticsearch注解配置索引、映射和实体的关系
package com.itheima.domain;
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.Field;
import org.springframework.data.elasticsearch.annotations.FieldType;
//@Document 文档对象 (索引信息、文档类型 )
@Document(indexName="blog3",type="article")
public class Article {
//@Id 文档主键 唯一标识
@Id
//@Field 每个文档的字段配置(类型、是否分词、是否存储、分词器 )
@Field(store=true, index = false,type = FieldType.Integer)
private Integer id;
@Field(index=true,analyzer="ik_smart",store=true,searchAnalyzer="ik_smart",type = FieldType.text)
private String title;
@Field(index=true,analyzer="ik_smart",store=true,searchAnalyzer="ik_smart",type = FieldType.text)
private String content;
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getTitle() {
return title;
}
public void setTitle(String title) {
this.title = title;
}
public String getContent() {
return content;
}
public void setContent(String content) {
this.content = content;
}
@Override
public String toString() {
return "Article [id=" + id + ", title=" + title + ", content=" + content + "]";
}
}
其中,注解解释如下:
@Document(indexName="blob3",type="article"):
indexName:索引的名称(必填项)
type:索引的类型
@Id:主键的唯一标识
@Field(index=true,analyzer="ik_smart",store=true,searchAnalyzer="ik_smart",type = FieldType.text)
index:是否设置分词
analyzer:存储时使用的分词器
searchAnalyze:搜索时使用的分词器
store:是否存储
type: 数据类型
8)创建测试类SpringDataESTest
package com.itheima.test;
import com.itheima.domain.Article;
import com.itheima.service.ArticleService;
import org.elasticsearch.client.transport.TransportClient;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations="classpath:applicationContext.xml")
public class SpringDataESTest {
@Autowired
private ArticleService articleService;
@Autowired
private TransportClient client;
@Autowired
private ElasticsearchTemplate elasticsearchTemplate;
/**创建索引和映射*/
@Test
public void createIndex(){
elasticsearchTemplate.createIndex(Article.class);
elasticsearchTemplate.putMapping(Article.class);
}
/**测试保存文档*/
@Test
public void saveArticle(){
Article article = new Article();
article.setId(100);
article.setTitle("测试SpringData ElasticSearch");
article.setContent("Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端API 进行封装 \n" +
" Spring Data为Elasticsearch Elasticsearch项目提供集成搜索引擎");
articleService.save(article);
}
}
3.3 Spring Data ElasticSearch的常用操作
3.3.1 增删改查方法测试
package com.itheima.service;
import com.itheima.domain.Article;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
public interface ArticleService {
//保存
public void save(Article article);
//删除
public void delete(Article article);
//查询全部
public Iterable<Article> findAll();
//分页查询
public Page<Article> findAll(Pageable pageable);
}
package com.itheima.service.impl;
import com.itheima.dao.ArticleRepository;
import com.itheima.domain.Article;
import com.itheima.service.ArticleService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.stereotype.Service;
@Service
public class ArticleServiceImpl implements ArticleService {
@Autowired
private ArticleRepository articleRepository;
public void save(Article article) {
articleRepository.save(article);
}
public void delete(Article article) {
articleRepository.delete(article);
}
public Iterable<Article> findAll() {
Iterable<Article> iter = articleRepository.findAll();
return iter;
}
public Page<Article> findAll(Pageable pageable) {
return articleRepository.findAll(pageable);
}
}
package com.itheima.test;
import com.itheima.domain.Article;
import com.itheima.service.ArticleService;
import org.elasticsearch.client.transport.TransportClient;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations="classpath:applicationContext.xml")
public class SpringDataESTest {
@Autowired
private ArticleService articleService;
@Autowired
private TransportClient client;
@Autowired
private ElasticsearchTemplate elasticsearchTemplate;
/**创建索引和映射*/
@Test
public void createIndex(){
elasticsearchTemplate.createIndex(Article.class);
elasticsearchTemplate.putMapping(Article.class);
}
/**测试保存文档*/
@Test
public void saveArticle(){
Article article = new Article();
article.setId(100);
article.setTitle("测试SpringData ElasticSearch");
article.setContent("Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端API 进行封装 \n" +
" Spring Data为Elasticsearch Elasticsearch项目提供集成搜索引擎");
articleService.save(article);
}
/**测试保存*/
@Test
public void save(){
Article article = new Article();
article.setId(1001);
article.setTitle("elasticSearch 3.0版本发布");
article.setContent("ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口");
articleService.save(article);
}
/**测试更新*/
@Test
public void update(){
Article article = new Article();
article.setId(1001);
article.setTitle("elasticSearch 3.0版本发布...更新");
article.setContent("ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口");
articleService.save(article);
}
/**测试删除*/
@Test
public void delete(){
Article article = new Article();
article.setId(1001);
articleService.delete(article);
}
/**批量插入*/
@Test
public void save100(){
for(int i=1;i<=100;i++){
Article article = new Article();
article.setId(i);
article.setTitle(i+"elasticSearch 3.0版本发布..,更新");
article.setContent(i+"ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口");
articleService.save(article);
}
}
/**分页查询*/
@Test
public void findAllPage(){
Pageable pageable = PageRequest.of(1,10);
Page<Article> page = articleService.findAll(pageable);
for(Article article:page.getContent()){
System.out.println(article);
}
}
}
3.3.2 常用查询命名规则
关键字 | 命名规则 | 解释 | 示例 |
---|---|---|---|
and | findByField1AndField2 | 根据Field1和Field2获得数据 | findByTitleAndContent |
or | findByField1OrField2 | 根据Field1或Field2获得数据 | findByTitleOrContent |
is | findByField | 根据Field获得数据 | findByTitle |
not | findByFieldNot | 根据Field获得补集数据 | findByTitleNot |
between | findByFieldBetween | 获得指定范围的数据 | findByPriceBetween |
lessThanEqual | findByFieldLessThan | 获得小于等于指定值的数据 | findByPriceLessThan |
3.3.3 查询方法测试
1)dao层实现
package com.itheima.dao;
import com.itheima.domain.Article;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
import java.util.List;
public interface ArticleRepository extends ElasticsearchRepository<Article, Integer> {
//根据标题查询
List<Article> findByTitle(String condition);
//根据标题查询(含分页)
Page<Article> findByTitle(String condition, Pageable pageable);
}
2)service层实现
public interface ArticleService {
//根据标题查询
List<Article> findByTitle(String condition);
//根据标题查询(含分页)
Page<Article> findByTitle(String condition, Pageable pageable);
}
package com.itheima.service.impl;
import com.itheima.dao.ArticleRepository;
import com.itheima.domain.Article;
import com.itheima.service.ArticleService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public class ArticleServiceImpl implements ArticleService {
@Autowired
private ArticleRepository articleRepository;
public List<Article> findByTitle(String condition) {
return articleRepository.findByTitle(condition);
}
public Page<Article> findByTitle(String condition, Pageable pageable) {
return articleRepository.findByTitle(condition,pageable);
}
}
3)测试代码
package com.itheima.test;
import com.itheima.domain.Article;
import com.itheima.service.ArticleService;
import org.elasticsearch.client.transport.TransportClient;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import java.util.List;
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations="classpath:applicationContext.xml")
public class SpringDataESTest {
@Autowired
private ArticleService articleService;
@Autowired
private TransportClient client;
@Autowired
private ElasticsearchTemplate elasticsearchTemplate;
/**条件查询*/
@Test
public void findByTitle(){
String condition = "版本";
List<Article> articleList = articleService.findByTitle(condition);
for(Article article:articleList){
System.out.println(article);
}
}
/**条件分页查询*/
@Test
public void findByTitlePage(){
String condition = "版本";
Pageable pageable = PageRequest.of(2,10);
Page<Article> page = articleService.findByTitle(condition,pageable);
for(Article article:page.getContent()){
System.out.println(article);
}
}
}
###3.3.4使用Elasticsearch的原生查询对象进行查询。
@Test
public void findByNativeQuery() {
//创建一个SearchQuery对象
SearchQuery searchQuery = new NativeSearchQueryBuilder()
//设置查询条件,此处可以使用QueryBuilders创建多种查询
.withQuery(QueryBuilders.queryStringQuery("备份节点上没有数据").defaultField("title"))
//还可以设置分页信息
.withPageable(PageRequest.of(1, 5))
//创建SearchQuery对象
.build();
//使用模板对象执行查询
elasticsearchTemplate.queryForList(searchQuery, Article.class)
.forEach(a-> System.out.println(a));
}